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A Brief History of Perturbative Renormalization Theory

Stiickelberg & Petermann ('53): Local Freedom in S-matrix
Popineau & Stora ('82): Main Theorem of Renormalization
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Classical Field Theory

F: (M) —C, o Flp [/fx) 00" + &) ()" o

e.g.

n

Vn : <F(")(g0),h®"> = dd/\n

Definition (Deformable Algebra)

Poisson algebra (F(M), |-, -], "), such that VF, G € F(M):
Pointwise Product: (F - G)( ) = F(v) G(v).
Poisson structure: |F, G| () := <F AG(1)> ().
where A = Aret — Aagy-

F(M(p) € &(M") and [WF(F(H))]Qnd N {Wﬂ UF"} =0.

F(ga+Ah)‘A (€C, hes).
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Deformation Quantization

0 - 0
dp(x) — op(y)’
H = A, + HY™: Hadamard bisolution, A, = (iA)": Wightman func.
H3¥™: smooth, symmetric, Lorentz invariant Klein-Gordon bisolution.

My ::/dxdy H(x,y)

(ATH)

FQO[R)™ ——— F) ] 5
\*\\x / , FxG ::kZ_OId<F(k)’H®kG(k)>'
FO) (]
(FOOUA. %, HIF.6L =% 1F.6)
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Deformation

1 >
b = 3 | e Helen) sy

He := Afr + H¥Y™ Feynman-like propagator,
Time Ordering Operator: T := exp(Al'},_).

FO[AIP = FOOH® FpG=T (rlF .T716)

i v _ FORTCN
FO)[[R)] —T— F(M)[[] Z < )

F-7G=FxG if supp(F) later than ("2") supp(G)
F -7 G  uniquely defined iff  supp(F) Nsupp(G) =0

(F(MD[[A]], ) )
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Graph Structure
rHF(F@G <HF’ ®G( )>: S 6a:®v€VFV'_>®v€VF\£QV)

Graph expansion

hIE ]
Fi-r = > Z Sr,é"‘(Fl ® - ® Fp)),
aeNn [egG,
Ga: set of non-tadpole graphs I with \V(F)] = n=dim(a), |E(N)| = &

Definition (Local Functional)

F € F(M) is called local (F € Fioc(M)), if Vn € N, Vp € &(M):
supp(F("(¢)) C Diag(M") = {x; = - - = x,} (thin diagonal)
WF(F("(p)) C [TDiag(M")]*.

F@)(R) = Y Fork(x) 50(7) € D(M) © Eypae (M)
Find restriction Sr of @.cg(ry Hr(e) J
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S-matrix

S = expr : Fioc(M)[[A]] — F(M)[[A]] ,

z S 3 o (s (F)

n=0  aeN"Teg,

Tn(F®n)
S(A+ B) = S8(A)xS(B) if supp(A) 2 supp(B).
S(0) =1, sW(0) = loc
S(F)(0) = S(Fi) (e )+0(h:'v+1) Flo': Taylor
vhe M) : (258, ) = SDO)(F) (3E, h)

— Jloc
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Stiickelberg-Petermann Group

Z : FrocM)[[A]] = Fioc(M)[[AI] ,
Z(0) =0
ZW(0) = id.
Z=id+ O(h).
Let supp(A) Nsupp(C) = 0, then

Z(A+B+C)=Z(A+B)—Z(B)+ Z(B+ C).

Z(F)(0) = Z(FE) (o) + O(RN ).

Vo e &M): & =0.
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Stora’s Main Theorem

Main Theorem of Perturbative Renormalization

Given two scattering matrices, S and S, both fulfilling the conditions
Causality, Starting Element, p-Locality, and p-Independence, [C1]-[C4],
there is an element of the Stiickelberg-Petermann Renormalization Group,
Z € R, such that

S=8o07Z.

Conversely, given a scattering matrix S fulfilling [C1]-[C4] and a Z € R,
then 8 o Z is a scattering matrix fulfilling [C1]-[C4].

Brunetti, Diitsch, Fredenhagen 2004 / 2009.
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Corollary (Faa di Bruno’s Formula)

Let S fulfill [C1]-[C4], and Z € R, then

(So Z)(") (0) = Z s(PD(o (@Z 1 )

PePart{1,...,n} IeP

where Part{1, ..., n} is the set of all partitions of the index set {1,..., n}.

“®" denotes symmetrized tensor product: A® B := 3 (A® B + B ® A).
" denotes composition of linear maps

n Oier 2UN(0) | s(P(0)

Fioc(M)[[A]]® Fioc(M)[[A]] 7 FM)[[A] -
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Commutative Part

Definition (£, commutative part)

Let §) be the free commutative algebra generated by differential operators
an: Z— an(2) = Z("(0),
product: (ax ® a;) (Z) := ax(Z) ® ay(Z2); unit: 1(Z) =id : Fioc — Fioc-

Faa di Bruno, Aa, := Z ap| ® @ aj|.-
PePart{1,...,n} I1eP
deg(a,) := n — 1, compatible with A and M.
Starting Element condition: a;(Z) = Z(1)(0) = id
(9, ®,A) is No-graded connected (a; = 1).

A(an) = — > 3p| © (@ A(alll)>

PePart{l,...,n}\{P1} 1eP
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Noncommutative Part

Necessary for dualizing whole structure of R.
k k
c:oen—9H . Cae®a)=a@Oa;,
i=1 i=1

with (3@ O, 34) (2) = a(2) - Ol a4(2).
with grading, unit, and coproduct.

¢,% € Aut(9): pec 1) :=Co(p®@¢)oA.

Ac(an) = — > ap© (D ap -

PePart{l,...,n}\{P1} leP

Algebraic Dual of Stiickelberg-Petermann Group: ($,®,©), A, Ac) )
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Choosing a Feynman Propagator

d € 2N

HE8 (x) = WS (x) + B™HS(x) € 2'(M), ¢ eQ\{0}cC.
N N e’
NK%71 NI#—I
W}"’“’C 0, A?’“. B™:#:C: smooth, symmetric,
Lorentz invariant Klein-Gordon solution.

2

H,'_-"’”’C as well as H,'_-"’“’C_>0 depend smoothly on mass parameter m?.

k
Vk e N: [H,'_—"’“’C} € 2'(M\ {0}) has unique extension to 2'(M).

Vi e 2(M): ( — <[Hfrn’”’<]k : f> is analytic in Q\ {0} C C,

k
with pp([H,’__"’“’C} ) € Ebirac @ local distribution.
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Scattering Matrix

52

1
TC = hr/ / m = /d d Hrr"“7C ) S (NS A
eXp( ) ) HF NTNe 2 ey F (X y) 6@(X) 580()/)

H[f__mm(
Fopc 6:=T¢(TCF-T¢776).

S¢(F) :=expgc(F).
satisfies conditions [C1]-[C4].

is a regularization outside large diagonal.
Let Fi,...,Fn € Fioc S.t. Vi # j: supp(F;) Nsupp(Fj) = 0, then

lim SO @ @F) =THFR® - ©F).
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S = ||| 1 S< OZ .

Writing this in components, we get

(Sc02)" @)= 3 s (@ Zé"'><o>> .

PePart{1,...,n}

The counterterms of minimal subtraction are given by, P1 = {{1,...,n}},

Z7)(0) = —pp 3 5P o (@z“ )
mA{P1}

PePart{l,..., IeP
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The Epstein-Glaser Forest Formula

MS gives unique extension at each step of EG, e.g., Z<(2) = —pp(8(<2)).
Solution of Epstein-Glaser recursion is possible.

VP € Part{l,...,n}:

MS c(n) . _ \Pl) (1) = )i if k=1
~TMSs() = (@R,( )) Rk_{_pp e

IeP
F:={-->P,}, tot. ord. set of partitions, P, = {{1},...,{n}}

Theorem (Epstein-Glaser Forest Formula)

The finite part of the n-fold regularized time-ordered product is given by

sta= X (IT-m) s

FCPart{1,...,n} \PEF
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Feynman Rules and Minimal Subtraction

feyny : ap — ap(Z) : Fol — Fioc , linear.

oC

Homomorphism w.r.t. ® and (©
feyn, : ap — a5(S¢) FEl v F | linear,
Homomorphism w.r.t. ®

id n=1
pplan(S¢)] n>1.

(Rofeyn;) (an) := {

Homomorphism w.rt. © and © Rota-Baxter arg. redundant.
Afeync( n) = Rofeyn. o Ac(as).

S( ) — feync oc Aceyn

Cyre (an).
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Graph structure

I € G, : non-tadpole graph;  ~;: full vertex part of / C V(I').
Part®V/(I'): partitions into connected subgraphs,

i.e.,VP € Part®V(l) : ¥YI € P : v connected.
[/P: graph with blocks /| € P as vertices and as lines

all lines between different blocks /, 1" € P.

AT= Y T/P® Uw.

PePartc V(T) IeP

(feynC o Afeyn ) (r= Z feyn (I/P)- (@ AfeynC ) :

PePart V() IeP

Renormalization Hopf Algebra Emerging from Stora’s Main Theorem



pAQFT Renormalization Group and Main Theorem Hopf algebra DimReg+MS Conclusion and Outlook

A@:o@@—i—@@oooo—i—%@@o@

+R Dee

feyn, sc ASTE(€GY) = teyn (£5%) + AT (£ON)
+2feyn (@) - (id 0 A (6))

feyn,

+teyn (R (id O AT (@) o id)
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Hopf algebra structure of pQFT may be understood as the
algebraic dual of the Stiickelberg-Petermann renormalization group.

To describe multiple interactions the introduction of an additional,
non-commutative Hopf algebra product is necessary.

Feynman rules and renormalization map emerge naturally
and give a recursion for minimal subtraction (MS) counterterms.

Epstein-Glaser recursion can be solved in terms of a forest formula.

Connes-Kreimer theory of renormalization follows as a
special case from Stora’s main theorem.
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Applications to the (computer-assisted) computation of higher order
contributions to the perturbative expansion?

Relation to topics in pure mathematics such as Number Theory and
Noncommutative Geometry (Multiple Zeta Values, Polylogarithms,
Graph Polynomials, ...) as suggested by the Connes-Kreimer

framework?

Renormalization of gauge theories also in the algebraic setting?
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